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Most coverage-guided kernel fuzzers test operating system kernels based on syscall sequence synthesis.
However, there are still syscalls rarely or not covered (called low frequency syscalls, LFS) in a period of fuzzing,
meaning the relevant code branches remain unexplored. This is due to the complex dependencies of the LFS
and mutation uncertainty, which makes it difficult for fuzzers to generate corresponding syscall sequences.
Since many kernel fuzzers can dynamically learn syscall dependencies from the current corpus based on
the choice table mechanism, providing comprehensive and high-quality seeds could help fuzzers cover LFS.
However, constructing such seeds relies heavily on expert experience to resolve the syscall dependencies.

In this paper, we propose SyzGPT, the first kernel fuzzing framework to automatically generate effective
seeds for LFS via Large Language Model (LLM). We leverage a dependency-based retrieval-augmented genera-
tion (DRAG) method to unlock the potential of LLM and design a series of steps to improve the effectiveness
of the generated seeds. First, SyzGPT automatically extracts syscall dependencies from the existing documen-
tation via LLM. Second, SyzGPT retrieves programs from the fuzzing corpus based on the dependencies to
construct adaptive context for LLM. Last, SyzGPT periodically generates and repairs seeds with feedback to
enrich the fuzzing corpus for LFS. We propose a novel set of evaluation metrics for seed generation in kernel
domain. Our evaluation shows that SyzGPT can generate seeds with a high valid rate of 87.84% and can be
extended to offline and fine-tuned LLMs. Compared to seven state-of-the-art kernel fuzzers, SyzGPT improves
code coverage by 17.73%, LFS coverage by 58.00%, and vulnerability detection by 323.22% on average. Besides,
SyzGPT independently discovered 26 unknown kernel bugs (10 are LFS-related), with 11 confirmed.
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1 Introduction
Kernel is the core component of the operating system that manages the resources and provides
interfaces for other components. Security vulnerabilities in the kernel often have wide-ranging
impacts and serious hazards. For example, Null-Pointer-Dereference can lead to memory leak or
kernel panic [3], Out-Of-Bounds can result in denial of service or privilege escalation [2], and Use-
After-Free can be exploited to privilege escalation or remote code execution [4]. According to CVE
Details [53], hundreds of Linux kernel CVEs have been reported yearly, increasing the urgency of
discovering and fixing kernel vulnerabilities. As the scale of operating systems continues to grow [1],
discovering vulnerabilities through manual auditing becomes difficult and impractical. Fuzzing, an
automated method for detecting bugs in software and systems, has proven particularly effective
in various scenarios, including kernels. As the most widely used coverage-guided kernel fuzzer,
Syzkaller [12] has found around 7k bugs in Linux kernel by Oct 2024. These modern kernel fuzzers
generally test kernels by invoking sequences of system calls (syscalls), also known as syscall-based
kernel fuzzers. The syscall sequences (Syzkaller-style programs1) are synthesized and mutated under
the guidance of syscall description language (e.g., Syzlang [13]). Then, the programs are scheduled
with specific guiding mechanisms, such as coverage-guided [28, 56], subsystem-guided [35, 67],
and vulnerability-guided [32, 71], and persisted in corpus (a set of effective programs).

In general, the more valid syscalls synthesized in the corpus, the more code branches the fuzzer
explores, leading to the discovery of more bugs. Syzlang describes over 4400 specialized calls2 to
different interfaces of more than 360 system calls defined in the Linux kernel. However, many calls
take efforts to cover. According to our observations, the latest Syzkaller can only cover around
57% of the defined specialized calls (i.e., 2534 of 4446) on average in several 24-hour fuzzing tests.
We call the rarely3 or never covered syscalls Low Frequency Syscalls (LFS) and Low Frequency
Specialized sysCalls (LFSC, which is the granularity of our research in practice). LFSC may exist due
to environment dependencies, unresolved syscall dependencies [30], and the randomness in fuzzing.
Among the approximately 1900 observed LFSC, around five hundred device-related specialized
calls are automatically identified as disabled before fuzzing. Since there are efforts in environment
emulation [48, 51] to solve the coverage of these syscalls, the rest of LFSC are our research scope.
Motivation. An intuitive solution to cover them is executing effective programs containing these
LFSC during fuzzing. However, generating high-quality programs for the LFSC faces the following
limitations. L1: LFSC are hard to cover by fuzzer mutation. The syscall-based fuzzers generally
mutate the programs according to the dependencies they learn from execution (e.g., choice table
in Syzkaller and relation table in Healer [56]). Since LFSC are rare or not even in the corpus, it is
difficult for fuzzers to learn the corresponding dependencies of LFSC. Consequently, the fuzzers
can only rely on the random generation to cover the LFSC, which is inefficient. L2: The complex
syscall dependencies are hard to extract automatically. Constructing semantically valid programs
for LFSC requires conforming to the syscall synopsis and satisfying syscall dependencies, which
relies on expert experience. The usage and dependencies of the syscalls are described in the kernel
documentation (e.g., manpage [7]) and Syzlang documentation. Some syscall dependencies are
implicitly defined in kernel source code, which cannot be thoroughly and accurately extracted
through static analysis. Previous studies attempted to automatically extract syscall dependencies
by combining dynamic execution and static analysis [45, 56, 73]. However, it is time-consuming to
learn all dependencies from execution gradually. As shown at the left of the motivating example in
Figure 1, the limitations restrict the traditional fuzzers from reaching the LFSC-related bug entry.

1Syz-programs (also abbreviated as programs) are inputs of the kernel under test.
2Specialized calls are encapsulated for specific purposes of system calls, e.g., ioctl$I2C_RDWR is a specialized call of ioctl.
3In general, we consider syscalls that cannot be covered consistently over several 24-hour fuzzing as rare.

Proc. ACM Softw. Eng., Vol. 2, No. ISSTA, Article ISSTA038. Publication date: July 2025.



Unlocking Low Frequency Syscalls in Kernel Fuzzing with Dependency-Based RAG ISSTA038:3

bpf$MAP_LOOKUP_ELEM(…)
bpf$MAP_LOOKUP_ELEM(…)
……

openat$iommufd(…)

ioctl$IOMMU_IOAS_ALLOC(…)
ioctl$IOMMU_TEST_OP_ADD_RESERVED(…)
ioctl$IOMMU_DESTROY$ioas(…)

Hard to cover LFS:

1. static const struct iommufd_ioctl_op iommufd_ioctl_ops[] = {
2. IOCTL_OP(IOMMU_DESTROY,iommufd_destroy,struct iommu_destroy,id),
3. IOCTL_OP(IOMMU_IOAS_ALLOC,iommufd_ioas_alloc_ioctl,
4. // ...
5. #ifdef CONFIG_IOMMUFD_TEST
6. IOCTL_OP(IOMMU_TEST_CMD,iommufd_test,struct iommu_test_cmd,last),
7. #endif
8. };
9. static long iommufd_fops_ioctl(struct file *filp,
10. unsigned int cmd, unsigned long arg)
11. {
12. struct iommufd_ctx *ictx = filp->private_data;
13. const struct iommufd_ioctl_op *op;
14. struct iommufd_ucmd ucmd = {}; union ucmd_buffer buf;
15. unsigned int nr = _IOC_NR(cmd); int ret;
16. if (nr < IOMMUFD_CMD_BASE || (nr - IOMMUFD_CMD_BASE)
17. >= ARRAY_SIZE(iommufd_ioctl_ops))
18. return iommufd_vfio_ioctl(ictx, cmd, arg);
19. ucmd.ictx = ictx;
20. ucmd.ubuffer = (void __user *)arg;
21. ret = get_user(ucmd.user_size, (u32 __user *)ucmd.ubuffer);
22. if (ret) return ret;
23. op = &iommufd_ioctl_ops[nr - IOMMUFD_CMD_BASE];
24. // some checks
25. ucmd.cmd = &buf;
26. ret = copy_struct_from_user(ucmd.cmd, op->size, ucmd…);
27. if (ret) return ret;

28. ret = op->execute(&ucmd); //  Bug Entry!
29. return ret;
30. }

Syz-program (PoC)

Kernel Source Code
NAME
ioctl - control device

LIBRARY
Standard C library (libc, -lc)

SYNOPSIS
#include <sys/ioctl.h>
int ioctl(int fd,unsigned long op,...); /*glibc*/

DESCRIPTION
The ioctl system call manipulates the underlying device 

parameters of special files. … The argument fd must be 
an open file descriptor. The arg op …
RETURN VALUE
Usually zero is returned. A few ioctl operations use 

return value as an output parameter. errno …

NOTES
In order to use this call, one needs an open to …

The ioctl structure …

Syscall Manual Page

1) Complex dependencies
2) Fuzzing uncertainty

Traditional Fuzzers

SyzGPT

resource fd_iommufd[fd]
resource ioas_handle[int32]
openat$iommufd(fd const[AT_FDCWD], file ptr[in, 

string["/dev/iommu"]], flags flags[open_flags], 
mode const[0]) fd_iommufd

ioctl$IOMMU_DESTROY$ioas(fd fd_iommufd, cmd const
[IOMMU_DESTROY], arg ptr[in, iommu_destroy$ioas])

ioctl$IOMMU_IOAS_ALLOC(fd fd_iommufd, cmd const
[IOMMU_IOAS_ALLOC], arg ptr[in, iommu_ioas_alloc])

Syzlang Documentation

Dependency Extraction
Syscall level: openat, ioctl ……
Syzlang level: openat$iommufs ……

Program Generation
Is capable to generate Syz-program

LFSC

Fig. 1. A real-world example illustrating the limitation of LFSC and the motivation for our approach

With the rise of large language models (LLMs), massive amounts of data are being fed to
LLMs, including documentation and code on the internet [17]. Given their capability in code
comprehension and generation [16, 47, 58], we attempt to use LLMs to break through the limitations
of generating high-quality programs for LFSC. According to the capability tests in the motivating
example, we find that LLMs have the knowledge in the Linux kernel domain. Therefore, we can
leverage LLMs to extract syscall dependencies and generate seeds for LFSC instead of generating
them through an inefficient mutation process (addressing L1 and L2). However, there are still
challenges when adopting LLMs to generate effective Syz-programs for kernel fuzzing.
Challenges in using LLMs. C1: How to use LLM to generate valid seeds that meet the syntactic
requirements for kernel fuzzing. Although LLMs have shown excellent capabilities in security fields
of software, deep learning library, and protocol [25, 26, 43, 65], it is impractical to directly utilize
LLMs for Linux kernel fuzzing. The programs generated directly with simple instructions (zero-shot
or few-shot) have meager syntactic validity (see Table 2). Programs with invalid syntax would be
dropped by syntax checker and will not affect fuzzing. C2: How to use LLM to generate quality seeds
that improve the coverage of LFS. Among the syntactically valid programs directly generated by LLM,
many programs contain only one syscall without context or combinations of syscall sequences that
are contextually ineffective. Using those programs with invalid context has little help with fuzzing.
Our Approach. To address the challenges and improve the coverage of LFS in kernel fuzzing, we
propose SyzGPT, an LLM-assisted, automated kernel fuzzing framework for generating effective
seeds for LFS with dependency-based retrieval augmented generation (DRAG). We design the
following automated process to unleash the potential of LLM for kernel fuzzing. First, we use LLM
to extract the syscall dependencies from Linux kernel manpage documentation to augment the
dependencies extracted from Syzlang documentation through static analysis. Second, we provide
LLM with program syntax knowledge to help it understand the Syz-program format (C1). Then,
SyzGPT leverages the program knowledge in the runtime fuzzing corpus to enable LLM to infer the
synopsis and dependencies of the target syscalls via retrieval augmented in-context learning (the
term of few-shot learning [20]). Last, during the fuzzing loop, SyzGPT periodically extracts LFS
from the current corpus as targets, constructs adaptive prompts for retrieval augmented in-context
learning, generates and repairs effective seeds to enrich the fuzzing corpus (C2).

We implement SyzGPT based on Syzkaller (recent stable commit f1b6b00). On 436 sampled LFSC
targets, SyzGPT achieves a seed generation valid rate of 87.84%, outperforming the state-of-the-art
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LLM-based seed generator Fuzz4All [65] (16.74%). We also evaluate its fuzzing performance on three
representative Long-Term-Support Linux kernels (6.6, 5.15, and 4.19), which are widely deployed in
many distributions. Compared to state-of-the-art syscall-based fuzzers Syzkaller, MoonShine [45],
Healer [56], ACTOR [28], MOCK [66], ECG [72], and KernelGPT [70], SyzGPT improves code
coverage by 15.83%, 15.70%, 28.03%, 42.76%, 5.21%, 9.05%, and 7.52%, LFS coverage by 112.72%,
44.69%, 132.63%, 29.91%, 8.25%, 31.18%, and 46.60%, and vulnerability detection by 47.44%, 35.29%,
858.33%, 219.44%, 945.45%, 76.92%, and 79.69%, respectively. Besides, SyzGPT has independently
discovered 26 unknown bugs (10 are LFSC-related), with 11 confirmed.
Contributions. We summarize our contributions as follows:
• Novelty. We propose the first automated LLM-assisted kernel fuzzing framework aiming at seed
generation. We define and mitigate the LFS issue in kernel fuzzing. To address the challenges in
generating effective seeds for LFS, we propose documentation-based syscall dependency augmenta-
tion (Section 3.2) and dependency-based RAG to unleash the capability of LLM (Section 3.3), and
feedback-guided seed generation (Section 3.4) to enhance fuzzing performance.
• Benchmark.We introduce a benchmark for LLM-based kernel seed generation that includes
a novel set of evaluation metrics and datasets. We also build a high-quality dataset for LLM fine-
tuning (Section 4). To facilitate future comparisons and advancements in this domain, we have
open-sourced [15] the implementation, benchmark, and fine-tuned LLM of SyzGPT.
• Findings.According to our evaluation, SyzGPT achieves improvements of 17.73% in code coverage,
58.00% in LFS coverage, and 323.22% in vulnerability detection across three LTS kernels. Notably,
SyzGPT independently discovers 26 previously unknown real-world bugs with 10 LFS-related
(Section 5). In addition, we derive several insights into applying LLMs to kernel fuzzing (Section 6).

2 Background and Related Work
2.1 Syscall-Based Kernel Fuzzing
The Linux kernel defines over 360 syscalls [6] for different module interfaces and exposes the kernel
functionality to user-space processes. Therefore, the kernel fuzzers can test the kernel by invoking
different syscall sequences, called syscall-based kernel fuzzers [34, 52]. Syzkaller is a state-of-the-art
syscall-based kernel fuzzer, which utilizes Syzlang to define a pseudo-formal grammar for the
precise specification of syscalls and provides a comprehensive way to model complex data structures
and dependencies among syscalls. With the syscall specifications, Syzkaller could generate and
mutate test cases effectively. However, ensuring the quality of Syzlang and fully supporting the
various kernel modules and the growing drivers require expert knowledge and human efforts.
Some studies try to tackle this problem by automated syscall description generation. KSG [55]
finds syscall handler structures and the accessed data structure by probing the kernel dynamically.
SyzDescribe [29] identifies common implementation patterns to generate specifications through
static analysis. FuzzNG [21] proposes a simple alternative to Syzlang by API hooking, requiring
configurations less than 1.7% the size of Syzlang’s while achieving coverage comparable to Syzkaller.
However, generating more syscall descriptions does not alleviate the problem of LFS, and may even
introduce new LFS (e.g., we find 6 of these 12 newly defined syscalls [69] are LFS).

In addition, Syzkaller considers dependencies among syscalls by the mechanism of choice table,
which records the priority that a syscall should be invoked after another syscall and guides the
syscall selection during program generation and mutation. Many recent studies aim to improve
fuzzing coverage by resolving syscall dependency. MoonShine [45] distills the dependencies from
real-world programs execution traces. Healer [56] learns the relation table through dynamic
execution. ACTOR [28] and StateFuzz [73] adopt different guiding strategies to model the behaviors
of syscalls. SyzGen++ [23] extracts syscall dependencies and generates specifications through
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symbolic execution and operation pairing. MOCK [66] uses a neural network language model to
capture the context-aware dependencies of syscalls. However, the LFS can still be observed in
fuzzing within a unit of time. As an intuitive solution, we can generate effective seeds for these LFS.

2.2 Seed Generation for Kernel Fuzzing
Seed generation is fundamental in the fuzzing domain, where providing higher-quality seeds
enhances the fuzzing performance. However, unlike seeds generated for user-space fuzzing [49, 61],
those used in kernel fuzzing are highly structured and format-sensitive. Syzkaller generates inputs
with the guidance of the syscall description language and mutates inputs according to the choice
table and hints. All inputs must satisfy the program syntax [9], or the checker will filter them out.

Due to the strict program syntax and complex syscall dependencies, it is hard to construct high-
quality seeds manually. Although the Syzkaller project has provided several hundred expert-written
default seeds in sys/linux/test/, these seeds can only cover 225 specialized calls (82 system calls),
which leaves the efforts of synthesizing valid syscall sequences for LFSC to the fuzzing phase.
However, as explained in Limitation L1, it is also inefficient to cover the LFSC by fuzzer mutation.
Although some code oriented [54, 57] and vulnerability oriented [33, 76] approaches may impel
fuzzers to explore such syscalls, the coverage of LFSC remains confined to the specific targets and
the reliance of static analysis and dynamic execution introduce substantial performance overhead.
Thus, direct generation of valid seeds for LFSC presents a superior solution. Unfortunately, our
investigation reveals no existing work specifically addressing Syz-program generation. This critical
technical gap establishes an important research challenge, motivating us to propose SyzGPT.

2.3 Large Language Model for Fuzzing
Large Language Models are Transformer-based [27, 36, 59] models pre-trained on massive textual
datasets. Aligned with particular intentions [75], LLMs have advanced in many natural language
processing tasks. Specifically, users can guide LLMs to handle specific tasks through prompts [44],
which are framed as questions or instructions in natural language. Many approaches for designing
prompts (prompt engineering) have been proposed to improve the performance of LLMs, such as
Few-shot learning [20], Chain-of-thought [63] and Retrieval-augmented generation [37].
Recent studies have been exploring the potential of LLMs in code generation [39, 50, 62] and

fuzzing. TitanFuzz [25] applies LLMs to generating test cases in deep learning library fuzzing.
Fuzz4All [65] demonstrates that LLMs can serve as a universal fuzzer for various software systems.
ProphetFuzz [60] leverages auto-prompting to predict and fuzz high-risk option combinations.
ChatAFL [41] proves the effectiveness of LLMs for protocol fuzzing in enriching initial seeds and
state inference. WhiteFox [68] utilizes LLMs to generate high-quality inputs in white-box compiler
fuzzing. Unfortunately, none of these methods are applicable to the Linux kernel.

As a preliminary attempt to use LLMs in the domain of kernel fuzzing, a technical blog [18] and
KernelGPT [70] show the feasibility of LLMs for syscall specification generation. Then ECG [72]
further explores LLMs in generating C-based inputs for embedded OS kernel functions. However,
none of them directly support seed generation in Syz-program format for kernel fuzzing or aim at
alleviating LFSC problem. KernelGPT focuses on syscall specifications but not Syz-programs and
may introduce new LFSC through its syscall definitions. ECG requires converting C programs to
Syz-programs, a process proven inefficient due to its minimal conversion success rate (Section 5.1).
Furthermore, since many LFSC-related kernel functions are inaccessible to user-space C programs
without explicit syscall invocations, this indirect approach underperforms the direct syscall sequence
generation via Syz-programs. Therefore, we propose SyzGPT, which leverages DRAGwith historical
knowledge to empower LLM-based Syz-program generation, ultimately enhancing kernel fuzzing
coverage of both code and syscalls.
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3 Design
In this section, we present the design of SyzGPT, an LLM-assisted kernel fuzzing framework for
generating effective seeds for low frequency syscalls and improving the fuzzing performance. We
first overview the framework and then describe how each component works.

Existing Corpus

Syzbot PoCs

Open-soure / Local

LLM

② Retrieval Augmented In-context Learning

Fuzzer Corpus

Adaptive Prompts

Repair

Program
Context

:  one-time

Feedback-guided Seed Generation③

Update

Corpus Analysis

: loop

Loop

Init

Guide

Interval T

Init Fuzzer

:  optional

Generate

Arrow Type Inverted Index

Query

Target LFS

Programs

Retrieve

r0 = openat$audio1(0xff9c, ...)
ioctl$SNDCTL_DSP_SYNC(r0, 0x5001, 0x0)
write$dsp(r0, &(0x7f..00)=' ', 0x1)
ioctl$SNDCTL_DSP_SPEED(...)

Extract

:  loop start ···

R-Programs

State
Info

Prog
Syntax

Fine-tune

Questions
&

Answers

Manpages

① Syscall Dependency Augmentation

Static Analysis

Syzlang Docs

Extraction

Merged Syscall Dependencies

System Call Level Specialized Call Level

Iterative

Fe
ed

b
a

ck

···

Fig. 2. Framework of SyzGPT

3.1 Overview
Figure 2 illustrates the framework of SyzGPT. In the preprocessing phase (white arrows), SyzGPT
collects Linux manpage documentation and Syzlang specifications from the internet. It then extracts
system call level dependencies from the manpages via LLM, augmenting the specialized call level
dependencies extracted from Syzlang through argument-based static analysis (step ①). The merged
dependencies guide the dependency-based RAG in step ②. In the loop phase (black arrows), SyzGPT
maintains an inverted index of syscalls from the historical corpus (runtime fuzzer corpus and any
existing corpus), serving as the program base for retrieving reference programs (R-programs4). It
identifies LFS by comparing covered syscalls in the runtime corpus with the enabled syscall set, and
retrieves 𝑁 R-programs for each target LFS based on the augmented dependencies. With program
syntax and R-programs in context, SyzGPT performs retrieval-augmented in-context learning for
target LFS (step ②). Next, SyzGPT adapts the seed generation strategy based on execution feedback
from the runtime corpus and iteratively repairs invalid programs based on syntax feedback (step
③). Finally, it loads the generated seeds to enrich the corpus. With a preset update interval 𝑇 ,
SyzGPT SyzGPT periodically repeats steps ②-③ to generate new seeds for the current LFS, while
automatically building a dataset for fine-tuning if needed.

3.2 Syscall Dependency Augmentation
According to the mechanism of choice table, Syzkaller-like fuzzers primarily learn the dynamic
syscall dependencies from correlations observed in the corpus. However, acquiring these depen-
dencies requires significant fuzzing time to cover as many syscall combinations as possible, and
some LFSC may still be missing. To address this, we propose leveraging LLMs to extract syscall
dependencies from kernel documentation (e.g., manpages) before fuzzing (① in Figure 2), as these
documents contain rich descriptions of both explicit and implicit syscall dependencies.

Figure 3 shows the workflow of extracting syscall dependency from Linux manpage using LLM.
First, SyzGPT determines whether to condense the manpage documentation by comparing the total
length of all sections against the LLM’s context limit. To encourage comprehensive extraction, we
provide definitions and examples of explicit and implicit syscall dependencies in the first round of
extraction. We define explicit dependencies as relationships where one syscall directly relies on
4Throughout this paper, we refer to R-programs as programs containing syscalls on which the target syscall depends.
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the result or output of another. For example, syscall accept explicitly depends on select, poll,
epoll as the manpage states: “you can use select, poll, or epoll. A readable event will be delivered, and
you may then call accept to get a socket for that connection”. Implicit dependencies refer to indirect
relationships that arise from the kernel’s overall behavior or state management. For example, futex
implicitly depends on mmap or shmat for shared memory operations, as stated in the manpage: “In
order to share a futex between processes, the futex is placed in a region of shared memory, created
using (for example) mmap or shmat”. In the second round of dependency extraction, the LLM is
prompted to complete the dependency set based on its heuristic knowledge. Finally, the results of
both rounds are merged to form the system call level dependency set.

User: <First Round Dependencies>.  
Please complete the syscall dependencies 

{
"depend":   [callA, callB],
"depended": [callC, callD]

}

Manpage Doc

Condensed Doc

User: <Kernel Doc>.  Please extract
syscall dependencies for <Target Syscall>

[SYNOPSIS]
[DESCRIPTION]
[RETURN VALUE]
[NOTES]
……

[SYNOPSIS]
[DESCRIPTION]
[RETURN VALUE]
[NOTES]
……

Condense
LLM: <Second Round Dependencies> 
{

"depend": [callA, callB, ...],
"depended": [callD...]

}

System Call  Level
Dependencies

Specialized Call  Level
Dependencies

Merge with

System: <Task Definition>: Completer
<Heuristic Reasoning>:

Recall your knowledge of syscalls...
<Output Requirements>: JSON Format

System: <Task Definition>: Extractor
<Explicit Dependency Definition>. Examples
<Implicit Dependency Definition>. Examples
<Output Requirements>: JSON Format

LLM: <First Round Dependencies> 
{

"depend": [callA, ...],
"depended": [callC, ...]

}

Fig. 3. Workflow of syscall dependency extraction and augmentation

We extract the specialized call level dependencies from Syzlang by analyzing the in, out, and
inout (means that the argument can be both input and output) directions of syscall arguments
and returns. If a syscall consumes an argument with direction in or inout, it should be invoked
after a syscall which produces the corresponding resource through return (direction out) or
argument (direction inout). For example, ioctl$ASHMEM_GET_PROT_MASK has three arguments
fd (fd_ashmem), cmd (const[30470, const]), and arg (ptr[out, ashmem_pin]). And the return ar-
gument of openat$ashmem is fd_ashmem, so a dependency is built through fd_ashmem. More-
over, ioctl$ASHMEM_SET_PROT_MASK has an argument arg (ptr[in, ashmem_pin]), which could be
matched with the out argument of ioctl$ASHMEM_GET_PROT_MASK. Finally, two levels of depen-
dencies are synthesized as the augmented syscall dependencies, which will guide the R-programs
retrieval in step ②. Then, SyzGPT steps into the loop phase (Figure 2 steps ②-③) for seed generation.

3.3 Retrieval-Augmented In-Context Learning
According to our observations, though using the few-shot approach to generate Syz-programs
slightly increases the valid program rate from 11.47% to 26.84% and average program length from
1.24 to 2.80 compared to zero-shot generation, the overall performance remains poor. This modest
improvement occurs because the context can serve as the format demonstration to LLM. However,
the fixed context results in high content coupling between the generation and fixed programs,
leading to many erroneous syscall invocations and combinations. These issues highlight the need
for a more adaptive approach. The Retrieval-Augmented Generation (RAG) is fitting for dynamically
adjusting context based on varying targets. However, retrieving suitable context for the LFS remains
a significant challenge. Therefore, we design a dependency-based retrieval-augmented in-context
learning approach to construct adaptive prompts for different LFS to ensure syntactic and contextual
effectiveness of program generation, corresponding to ② in Figure 2.
Corpus Analysis for LFS. Before constructing the adaptive prompts, generation targets must be
determined. SyzGPT automatically calculates the current LFS by comparing the syscalls covered
in the corpus with the enabled syscall set (usable syscalls determined at the beginning of fuzzing,
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introduced in Section 1). Meanwhile, SyzGPT establishes an inverted index [64, 74] for every syscall
by traversing the historical corpus, including the runtime corpus and the optional existing corpus
(e.g., Syzbot PoCs [5] and MoonShine corpus). The inverted index maps syscalls to the file hashes of
the programs containing the syscall, which speeds up the following R-programs retrieval procedure.
Dependency-based R-programs Retrieval. Since blindly retrieving programs from the historical
corpus would add many completely irrelevant syscalls to the context, we filter out the R-programs
that are valuable to the target syscall based on their dependencies. These R-programs can provide
adequate syntax information, parameter value references, and sequential inspiration for generating
programs for target syscalls. We define the syscalls that appear before the target syscall as preceding
syscalls and their preceding syscalls as multi-hop preceding syscalls. Because each syscall that
the target syscall depends on must belong to its preceding calls, we design a dependency-based
R-programs retrieval algorithm to evenly select syscalls across different dependency levels.

Algorithm 1: Dependency-based R-programs Retrieval
Data: Historical corpus 𝑃ℎ , default seeds 𝑃𝑑 , Augmented syscall dependencies 𝐷𝑎

Input: Target specialized call 𝑐𝑡 , few-shot number 𝑁
Output: Retrieved R-programs 𝑃

1 𝑃 ← 𝑠𝑒𝑡 ( ) , 𝑁ℎ𝑜𝑝 ← 𝑁 , 𝑐𝑛𝑡 ← 0 ; // variable initialization

2 𝑠𝑡 ← SplitCall(𝑐𝑡 ) ; // e.g., mmap←mmap$xdp

3 for 𝑘 ← 1 to 𝑁ℎ𝑜𝑝 do
4 𝑐 [𝑘 ], 𝑠 [𝑘 ] ← GetDependence(𝐷𝑎, 𝑐 [𝑘 − 1], 𝑠 [𝑘 − 1] ) ; // 𝑐 [0] = 𝑐𝑡 , 𝑠 [0] = 𝑠𝑡

5 for 𝑘 ← 1 to 𝑁ℎ𝑜𝑝 do
6 𝑐𝑘 ← RandomChoose(𝑐 [𝑘 ] )
7 if 𝑃 ← 𝑃 ∪ SearchProgram(𝑃ℎ, 𝑐𝑘 ) then
8 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
9 break if 𝑐𝑛𝑡 ≥ 𝑁

10 𝑠𝑘 ← RandomChoose(𝑠 [𝑘 ] )
11 𝑐′

𝑘
← ChooseCall(𝑠𝑘 )

12 if 𝑃 ← 𝑃 ∪ SearchProgram(𝑃ℎ, 𝑐′𝑘 ) then
13 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 1
14 break if 𝑐𝑛𝑡 ≥ 𝑁

15 for 𝑖 ← len(𝑃 ) + 1 to 𝑁 do
16 𝑃 ← 𝑃 ∪ ChooseProgram(𝑃𝑑 )
17 return 𝑃 [0 : 𝑁 ]

Algorithm 1 shows the R-programs retrieval process, SyzGPT takes historical corpus 𝑃ℎ , Syzkaller
default seeds 𝑃𝑑 , augmented syscall dependencies 𝐷𝑎 as known data. It receives target specialized
call 𝑐𝑡 (e.g., LFSC) and the shot number 𝑁 as input and outputs the retrieved R-programs 𝑃 . Firstly,
SyzGPT initializes dependencies query hop 𝑁ℎ𝑜𝑝 with 𝑁 (Lines 1), representing that it will search
up to 𝑁 hops (e.g., munmap depends on mmap, mmap depends on brk, and brk is the 2-hop preceding
syscall of munmap) of dependencies. SyzGPT splits target specialized call 𝑐𝑡 into syscall 𝑠𝑡 to take
syscall-level dependencies into account, and then queries the 𝑁ℎ𝑜𝑝 dependence of 𝑐𝑡 and 𝑠𝑡 from
the augmented syscall dependencies 𝐷𝑎 , which will be stored in 𝑐 [𝑘] and 𝑠 [𝑘] respectively (Lines
2-4). Secondly, SyzGPT randomly chooses a specialized call 𝑐𝑘 from the k-hop dependencies 𝑐 [𝑘]
and tries to retrieve one program containing 𝑐𝑘 from historical corpus 𝑃ℎ and add it to 𝑃 (Lines
6-9). Function 𝑆𝑒𝑎𝑟𝑐ℎ𝑃𝑟𝑜𝑔𝑟𝑎𝑚 glances the corpus and retrieves one program that contains 𝑐𝑘 and
has moderate program length. As for 𝑠𝑘 , SyzGPT randomly chooses one of its specialized calls 𝑐′

𝑘

from the enabled specialized call set and performs the same procedure on 𝑐′
𝑘
(Lines 10-14). Thirdly,

SyzGPT fills 𝑃 with programs from the default seeds 𝑃𝑑 up to the maximum length 𝑁 (Lines 15-17).
Finally, it returns the retrieved R-programs set 𝑃 (𝑁 is usually smaller than 5 in practice [22]).
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Prompt Construction for In-Context Learning. Unlike common programming languages where
few-shot with simple instructions often yields effective program generation, Syz-programs follow a
niche format defined exclusively by the Syzkaller project. This specialization is one of the reasons
why our zero-shot and few-shot Syz-program generation tests yield poor results. To address this,
we incorporate syntax learning and retrieval-augmented in-context learning to enhance LLM’s
ability to generate Syz-programs.

1.Please generate a comprehensive Syz-program for <Target Syscall C1>. 
2.Refer to syscall synopsis, argument types, values to ensure syntactic validity. 
3.Consider syscall and argument dependencies to ensure contextual validity. 
4.Craft an effective interaction among as much relevant syscalls as possible. 
5.Only output the program and avoid any other words.

Your task is to generate valid Syz-programs. The program syntax is a 
domain specific language defined by Syzkaller for describing sequences of 
syscalls in kernel fuzzing. The program syntax is: <Syz-program Syntax>

Assistant*: Retrieved <Syz-program P1> that contains C1

C
o

n
text

Q
u

e
ry

System:                            Syntax Learning

User*:                            In-context Learning 

User*: Please generate Syz-program for <Target Syscall Cn>... 

Assistant*: Retrieved <Syz-program Pn> that contains Cn

User:   Please generate Syz-program for <Target Syscall Ct>...

User* | Assistant*

Are constructed, not 
real-time context

line = assignment | call
assignment = variable " = " call
call = syscall-name "(" [arg ["," arg]*] ")" ["(" [call-prop ["," 

call-prop*] ")"]
arg = "nil" | "AUTO" | const-arg | resource-arg | result-arg | 

pointer-arg | string-arg | struct-arg | array-arg | union-arg
const-arg = "0x" hex-integer
resource-arg = variable ["/" hex-integer] ["+" hex-integer]
result-arg = "<" variable "=>" arg
pointer-arg = "&" pointer-arg-addr ["=ANY"] "=" arg
struct-arg =  "{" [arg ["," arg]*] "}"
array-arg = "[" [arg ["," arg]*] "]"
union-arg = "@" field-name ["=" arg]
call-prop = prop-name ": " prop-value
variable = "r" dec-integer
pointer-addr = hex-integer
region-size = hex-integer

Syz-program Syntax

...

Cn

Ct

C1

Syscall
Chain

Fig. 4. Adaptive prompts of retrieval-augmented in-context learning for LFS 𝑐𝑡

Figure 4 describes the adaptive prompts used by SyzGPT for program generation. In the system
prompt, we assign the task of generating a comprehensive Syz-program to the LLM and teach it the
Syz-program syntax based on the domain-specific language definition (on the left side of Figure 4).
When constructing adaptive prompts, SyzGPT automatically creates 𝑁 pairs of conversation history
between User and Assistant, where retrieved R-programs are provided as context. Specifically, the
user query consists of a request to generate a program containing the target syscall 𝑐𝑖 (𝑖 ∈ [1, 𝑁 ]),
along with emphases on syntactic validity, contextual validity, effective interaction, and output
format. Notably, 𝑐1 to 𝑐𝑛 form a syscall chain to target 𝑐𝑡 , where 𝑐𝑖 is the preceding syscall of the
next syscall. The assistant’s response is the retrieved program 𝑝𝑖 that contains 𝑐𝑖 .

3.4 Feedback-Guided Seed Generation for Fuzzing
With adaptive prompts for the target 𝑐𝑡 , SyzGPT can generate Syz-program accordingly. However,
due to strict syntax checks, some programs may still exhibit invalid syntax caused by minor syntax
errors or invalid context of unreasonable call sequences. Therefore, we propose program repair
with syntax feedback and program re-generation with execution feedback to address these issues
correspondingly. The workflow of feedback-guided seed generation is shown in Figure 5. We also
provide a running example in Figure 6 at the end of the section for better understanding.

Table 1. Heuristic repair operations to address different types of syntactic illegality

Syntax Error Type Repair Operation

❶ Unknown syscall SYSCALL Calculate the cosine similarity between SYSCALL and each specialized call that shares the same base
system call, and replace SYSCALL with the five most similar specialized calls.

❷ Want STR_A, got STR_B Utilize regular expression to replace the failure character 𝐵 with𝐴.

❸ Unexpected EOF Fixe the last syscall by multi-level parentheses completion and position arguments filling, since most
EOFs occur at the last syscall invocation due to the LLMs Parroting Problem [19].

❹ Escaping filename FILE Replace the illegal filenames with preset strings, such as “/dev/kvm” and “/tmp/file0”.

❺ Out of MaxCalls Trim lines exceeding the limit only when the target syscall has already included in previous lines.
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Program Repair with Syntax Feedback. Since Syzkaller’s syntax checker only reports the first
error it encounters, repairing all potential syntax errors via LLM is impractical, as it would require
multiple rounds of interaction and additional code snippets as context, leading to significant time
and token overhead. Therefore, we define several heuristic repair operations based on our empirical
observations to handle five main types of syntactic errors, as shown in Table 1. First, SyzGPT
reads the program into 𝑙𝑖𝑛𝑒𝑠 and fixes common faults by replacing double quotes with single
quotes, removing trailing semicolons, and converting unprintable ascii characters to hexadecimal
representation. Then, SyzGPT repairs the program iteratively, where it analyzes the syntax error
𝑒𝑟𝑟 reported by the checker and applies a corresponding repair operation. SyzGPT regards each
repair operation as one repair attempt and breaks the loop when the number of attempts exceeds
𝑅𝑡𝑟𝑦 or 𝑒𝑟𝑟 is 𝑁𝑜𝑛𝑒 . Finally, SyzGPT returns the repaired program.

interval T

LLM

Fuzzer

Generated
Before?

Adaptive
Prompts

failure feedback

Re-gen
Prompts

re-select

RepairLFS
corpus analysis

select   M

Skip

Programs

The following  Syz-programs have failed to 

cover <Target Syscall> in fuzzing:

<Failed Program1>, 

<Failed Program2>, 

…

Please re-generate an effective Syz-program 

for <Target Syscall>.

Re-gen Prompts

Start

Targets

Fig. 5. Workflow and prompt details of feedback-guided seed generation

Program Re-generation with Execution Feedback. According to Figure 5, in each generation
round, SyzGPT analyzes LFS from the corpus and randomly selects𝑀 LFS as generation targets. For
each target, SyzGPT adopts different generation strategies. If a target syscall has never been selected,
SyzGPT retrieves R-programs and constructs the adaptive prompts. If the target has failed fewer
times than a preset generation limit, SyzGPT attempts re-generation or re-selects another LFS with
a probability. If the failures exceed the limit, SyzGPT skips the target. The prompts for re-generation
include the program syntax in the system prompt and the context containing previously generated
programs that failed to cover the target syscall, as shown at the right of Figure 5.
Fuzzing Loop and Fine-tuning Support. In the fuzzing loop, the seed generation process is
triggered after each interval 𝑇 . After generating and repairing seeds for a batch of current target
syscalls, SyzGPT updates the current runtime corpus with the contextually valid programs and
waits for the next round of operations. Meanwhile, SyzGPT backs up the pairs of query prompts and
contextually valid programs during the fuzzing loop, which can serve as the datasets for instruction
fine-tuning of offline LLMs under the paradigm of “question” and “answer”.

bpf$BPF_MAP_FREEZE

bpf$OBJ_GET_MAP

N-hop Dependencies

bpf$BPF_MAP_GET_NEXT_ID(0xc, &(0x7f000
00001c0)={0x0, <r0=>0x0}, 0x8)
bpf$BPF_MAP_GET_FD_BY_ID(0xe, &(0x7f00
00000200)={r0, 0x0, 0x8}, 0xc)

syz_mount_image$fuse(0x0,&(0x7f000000208
0)='./file0\x00’, ...)
stat(&(0x7f0000000000)='./file0\x00’, &(0x7f0
000000040)={...})
setreuid(0x0, r0)
bpf$OBJ_GET_MAP(0x7, &(0x7f0000000180=
...='./file0\x00'}, 0x18)

Deserialize error: 
unknown syscall  stat$BPF_MAP_STAT

First Round Repair

······

Runtime Corpus

D
R
A
G

After N Round Repair

bpf$BPF_MAP_GET_FD_BY_ID

syz_mount_image$fuse(0x0, 
&(0x7f0000002080)='./file0\x00', 0x0, 0x0, 0x0, 0x0, 0x0)
stat$BPF_MAP_STAT(&(0x7f0000000000)='./file0\x00', 
&(0x7f0000000040)={0x0, 0x0, 0x0, 0x0, <r0=>0x0})
setreuid(0x0, r0)
bpf$BPF_MAP_FREEZE(0x10, &(0x7f0000001340)
={0x6, 0x0, ..., EOF 

Syntax-Checker

syz_mount_image$fuse(0x0, 
&(0x7f0000002080)='./file0\x00', 0x0, 0x0, 0x0, 0x0, 0x0)
stat(&(0x7f0000000000)='./file0\x00', 
&(0x7f0000000040)={0x0, 0x0, 0x0, 0x0, <r0=>0x0})
setreuid(0x0, r0)
bpf$BPF_MAP_FREEZE(0x10, &(0x7f0000001340)
={0x6, 0x0, ..., EOF 

Deserialize error: unexpected eof 
line #4:54: bpf$BPF_MAP_FREEZE(…, 0x0, …

Second Round Repair
syz_mount_image$fuse(0x0, 
&(0x7f0000002080)='./file0\x00', 0x0, 0x0, 0x0, 0x0, 0x0)
stat$BPF_MAP_STAT(&(0x7f0000000000)='./file0\x00', 
&(0x7f0000000040)={0x0, 0x0, 0x0, 0x0, <r0=>0x0})
setreuid(0x0, r0)
bpf$BPF_MAP_FREEZE(0x10, &(0x7f0000001340)
={0x6, 0x0, ..., EOF

Syntax-Checker

syz_mount_image$fuse(0x0, 
&(0x7f0000002080)='./file0\x00', 0x0, 0x0, 0x0, 0x0, 0x0)
stat(&(0x7f0000000000)='./file0\x00', 
&(0x7f0000000040)={0x0, 0x0, 0x0, 0x0, <r0=>0x0})
setreuid(0x0, r0)
bpf$BPF_MAP_FREEZE(0x10, &(0x7f0000001340)
={0x6, 0x0, ..., 0x0})

Target
LFSC

syz_mount_image$fuse(0x0, 
&(0x7f0000002080)='./file0\x00', 0x0, 0x0, 0x0, 0x0, 0x0)
stat(&(0x7f0000000000)='./file0\x00', 
&(0x7f0000000040)={0x0, 0x0, 0x0, 0x0, <r0=>0x0})
setreuid(0x0, r0)
bpf$BPF_MAP_FREEZE(0x10, &(0x7f0000001340)
={0x6, 0x0, ..., 0x0})

Syz-program is valid!

Syntax-Checker

Effective for Fuzzing?

No
Add to failure

Yes 
Add to corpus

Fig. 6. A running example for intuitive understanding the seed generation of SyzGPT
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4 Implementation
In this section, we introduce the implementation of SyzGPT (8k lines of Python and Go), including
dataset collection, dependency extraction, seed generation, fuzzer integration, and LLM fine-tuning.
Dependency Extraction and Augmentation. We crawl the documentation of 271 Linux system
call from the LinuxManual Page [7] and collect 187 Syzlang files defining the synopsis and resources
of 4446 specialized calls in Syzkaller. Then, we implement the system call level dependency extractor
based on OpenAI API and the specialized call level dependency extractor based on Python. To
ensure the determinism of syscall dependency extraction, we set the temperature of LLM to 0.3. Due
to the lack of dependency ground truth, we evaluate the syscall dependency extraction effectiveness
through manual analysis (81.37% dependencies of 15 sampled syscalls are correct).
Dependency-based RAG. To analyze LFS, we extend Syzkaller by modifying the RPC structure in
rpctype.Input to record covered syscalls. We implement dependency-based R-programs retrieval
algorithm by an inverted index mapping syscalls to related filenames and regex-based searching.
We implement SyzGPT-generator based on OpenAI API, with a temperature of 0.7 to introduce
more variability in program generation. In particular, SyzGPT-generator generates seeds for 100
selected targets every 1 hour, where it builds adaptive prompts or constructs re-generation prompts
with a failure limit of 3 and a probability of 0.1. To repair the generated programs, we implement
syz-repair based on Syzkaller, where 𝑅𝑡𝑟𝑦 is 25 as a balance of repairing accuracy and efficiency.
Notably, we do not explore the optimal parameter values, as they are already satisfying.
Fuzzer Integration and LLM Serving. Based on Syzkaller, we implement the seeds loading by
adding a Go routine in syz-manager. We specify the generation interval 𝑇 and the directory where
seeds will be generated and repaired at the beginning of running SyzGPT-fuzzer. Additional modules
for experiments are also added to track syscall coverage, rawcover and corpus statistics. In terms of
LLM fine-tuning, we implement the parameter efficient fine tuning (PEFT) with PyTorch based on
LoRA (Low-rank Adaptation [31]) for CodeLlama-7b-Instruct-hf. We collect the dataset (8k train
and 3k validation) from the context-valid programs generated by GPT-3.5-turbo-16k-0613 during
our fuzzing experiments, and obtain CodeLlama-syz by tuning on 4 × A800 GPUs with batch_size 2
for 2 epochs in 16 hours. We adopt fastchat with vllm to deploy all the offline and fine-tuned LLMs.

5 Evaluation
In this section, we evaluate SyzGPT to answer the following key research questions:
• RQ1. Seed Generation. What is the seed generation performance of SyzGPT?
• RQ2. Fuzzing. What is the fuzzing performance of SyzGPT compared to state-of-the-art tools?
• RQ3. Ablation study. How does each component contribute to the performance of SyzGPT?
• RQ4. Real-world Bug Discovery. Can SyzGPT discover real-world and LFSC-related bugs?
Platform. Our experiments are conducted on an Ubuntu 20.04 server with Intel Xeon CPU E7-4850
v4 @ 2.8GHz 128 cores and 256GB memory. The LLMs fine-tuning and serving are done on an
Ubuntu 22.04 server with Intel Xeon Gold 5218R @ 4.0GHz 512GB memory, and 2×A800 GPUs.
Experimental Setup. For seed generation experiments, we use a 24-hour corpus generated by
default Syzkaller as the existing corpus, since no runtime fuzzer corpus is available for SyzGPT.
The versions of the base LLMs are: GPT-3.5-turbo-16k-0613, GPT-4-0613, Claude-3-5-sonnet-0620,
CodeLlama-7b-Instruct, Vicuna-7b-1.5-16k, Llama-3-8b-Instruct. For fuzzing experiments, we com-
pile three target LTS kernels (6.6.12, 5.15.140, 4.19.300) with the Syzbot configs [11] accordingly. We
allocate 8 QEMU virtual machines (2vCPUs and 4GB memory) for every fuzzer. We continuously
fuzz the target kernels for 24 hours (192 CPU hours) and repeat the experiments five times (by
excluding the best and worst groups from seven runs) to avoid the effects of uncertainty. To ensure
fair comparison, all fuzzers are initialized with the same default seeds from Syzkaller project.
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Evaluation Metrics. As an LLM-based seed generation method, we evaluate the syntactic effec-
tiveness, semantic effectiveness, and costs of the generation of SyzGPT under different LLMs. As a
fuzzing framework for Linux kernel, we evaluate the performance of SyzGPT in overall code and
syscall coverage. We define the metrics as follows:
• Syntax Valid Rate (SVR): We define the programs that pass Syzkaller syntax checks as syntactically
valid. We evaluate the seed generation performance in syntactic validity by SVR ( 𝑁𝑠𝑦𝑛

𝑁𝑡𝑜𝑡𝑎𝑙
), where

𝑁𝑠𝑦𝑛 and 𝑁𝑡𝑜𝑡𝑎𝑙 are the numbers of syntax valid programs and total generated programs. 𝑁 ′𝑠𝑦𝑛 is
the number of syntax valid programs with length greater than 1. The higher the SVR and 𝑁 ′𝑠𝑦𝑛 , the
better SyzGPT performs in seed generation.
• Context Effective Rate (CER): We use CER to evaluate the seed generation performance in terms of
contextual effectiveness. The contextual effectiveness of a program represents the diversity of the
syscall sequences and the capability to cover more code branches. We define a program as context
effective if its execution coverage exceeds the sum of its individual syscalls’ coverage. Specifically,
we split a program 𝑃 (i.e., 𝑃 = {𝑐1, 𝑐2, ..., 𝑐𝑛}) into 𝑛 programs 𝑃𝑐𝑖 (only contains one syscall 𝑐𝑖 ). The
contextual effectiveness of 𝑃 can be judged as: 𝑏𝑜𝑜𝑙 (𝐶𝑜𝑣 (𝑃) > ∑𝑖=1

𝑖=𝑛𝐶𝑜𝑣 (𝑃𝑐𝑖 )). Then, we compute
CER=𝑁𝑐𝑜𝑛

𝑁𝑠𝑦𝑛
, where 𝑁𝑐𝑜𝑛 is the number of context effective programs. The higher the CER, the higher

the quality of the generated seeds, which are more likely to contribute to fuzzing.
• Program Diversity: We leverage average program length (𝐿=

∑
𝐿𝑖

𝑁𝑠𝑦𝑛
) and average syscall number

(𝑁𝑠=
𝑁𝑠𝑦𝑛

𝑁𝑠𝑦𝑛
) to represent the generation diversity, where 𝐿𝑖 and 𝑁 𝑖

𝑠 are the sequence length and
syscall number of the 𝑖-th program with valid syntax. The higher the 𝐿 and 𝑁𝑠 , the more diverse
the program generation, which is another manifestation of contextual effectiveness.
• Code and Syscall Coverage: Code coverage is a built-in metric of every coverage-guided kernel
fuzzer with kcov at the basic block level. We define unique coverage (𝐶𝑜𝑣𝑢 (𝐴|𝐵) = |𝐶𝑜𝑣 (𝐴) −
𝐶𝑜𝑣 (𝐴) ∩ 𝐶𝑜𝑣 (𝐵) |) as the number of unique basic blocks of fuzzer 𝐴 that 𝐵 cannot cover, then
we use unique coverage rate (𝑅𝑢 (𝐴|𝐵)=𝐶𝑜𝑣𝑢 (𝐴 |𝐵)

𝐶𝑜𝑣𝑢 (𝐵 |𝐴) ) to estimate 𝐴’s ability to find unique coverage
compared to 𝐵. We define rate of covered syscalls (𝑅𝑠= 𝑁𝑠

𝑁𝑒𝑛𝑎𝑏𝑙𝑒𝑑
), where 𝑁𝑠 and 𝑁𝑒𝑛𝑎𝑏𝑙𝑒𝑑 are numbers

of covered and enabled syscalls. The higher the coverage metrics, the better the fuzzing performance.
• Valuable Input Number (𝑁𝑣𝑖 ): We define a fuzzing input valuable if it aligns with the fuzzer’s
guiding strategy, such as triggering new coverage or signal. We use 𝑁𝑣𝑖 to represent the number of
valuable inputs during fuzzing, which can be captured by the bench mechanism of Syzkaller. The
higher the 𝑁𝑣𝑖 , the better the fuzzing performance in code coverage metrics.

5.1 RQ1: Seed Generation Performance
We evaluate the seed generation performance of SyzGPT in terms of syntactic validity, contextual
effectiveness and generation cost. As shown in Table 2, we choose seven different base LLMs: GPT-
3.5, GPT-4 and Claude-3.5-sonnet [46] represent online chat LLMs, Vicuna [24] and Llama-3 [42]
represent offline chat LLMs, CodeLlama stands for open-source LLMs with code knowledge, and
CodeLlama-syz is our fine-tuned version of CodeLlama based on context effective programs. We
extract LFSC from the scope of five 24-hour Syzkaller runs and sample 436 LFSC (approximately
25%) as generation targets, ensuring a diverse distribution across system calls. We compare our
method against zero-shot, few-shot, Fuzz4All and ECG methods under different LLMs. Zero-shot
adopts the User prompts in Figure 4, representing the capability of LLM itself. Few-shot consists
of 3 fixed queries and samples. Fuzz4All and ECG use their default prompts. KernelGPT is not
included in this experiment, as it is not designed for generating seeds. The results are shown in
Table 2, where our method demonstrates effectiveness and superiority.
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Table 2. Performance of program generation methods on different LLMs

Method LLM
Syntactic Validity Contextual Effectiveness

OER
Generation Cost

𝑁𝑠𝑦𝑛 SVR 𝑁 ′𝑠𝑦𝑛 𝑁𝑐𝑜𝑛 CER 𝐿 𝑁𝑠 Tokens Time (s)

SyzGPT

GPT-3.5 383 87.84% 285 186 48.56% 3.91 3.12 42.66% 1769.33 4.66
GPT-4 311 72.48% 310 240 77.17% 6.46 5.11 55.05% 1496.04 12.04

Claude-3.5-Sonnet 319 73.17% 318 261 81.82% 10.83 8.37 59.86% 1856.10 6.69
CodeLlama 358 82.11% 352 147 41.06% 4.82 3.13 33.71% 2279.84 20.10

CodeLlama-syz 383 87.84% 323 205 53.52% 3.66 2.41 47.01% 2422.68 8.55
Llama-3 300 68.81% 287 190 63.33% 5.73 4.55 43.58% 2036.24 4.38

Vicuna-v1.5 213 48.85% 27 12 5.63% 1.22 1.15 2.75% 1658.63 1.05

Fuzz4All GPT-3.5 73 16.74% 57 53 72.60% 5.41 3.59 12.16% 830.80 7.20

ECG GPT-3.5 57 13.07% 57 55 96.49% 4.95 3.14 12.61% 535.98 7.23

Few-shot GPT-3.5 117 26.83% 66 34 29.06% 2.80 2.61 7.80% 1887.86 5.50

Zero-shot
GPT-3.5 50 11.49% 6 3 6.00% 1.43 1.10 0.70% 502.15 12.94

CodeLlama 0 0% 0 0 0% 0 0 0% 1114.24 11.49
CodeLlama-syz 212 48.62% 130 93 43.87% 2.57 1.78 21.33% 925.24 7.27

ECG: We modified ECG through prompts migration, as it does not inherently support the seed generation task with syscalls as target.

Syntactic Validity. To calculate the number of generated programs with valid syntax (𝑁𝑠𝑦𝑛),
we implement a syntax validator based on Syzkaller’s program deserialization [8]: A program is
considered syntactically valid if it can be successfully deserialized from bytes into a structured prog.
According to Table 2, by comparing SVRs over different methods, we find it hard for LLMs to

understand the program syntax in zero-shot, few-shot, and Fuzz4All, which can be addressed by our
method. The superiority of SyzGPT indicates that our prompting method significantly improves
the syntactic validity of seed generation. ECG also underperforms due to two inherent flaws: (1)
Generated C programs lack kernel-space function access, limiting syscall scope. (2) The conversion
pipeline (C→trace→Syz-program) suffers cascading failures: only 141/436 C programs compile
successfully, 55 of which even fail during execution with incomplete traces due to parameters/en-
vironment dependencies; despite our patches enabling 137/141 trace2syz conversions (originally
0%), only 57 Syz-programs contain target syscalls (SVR=13.07%). By comparing SVRs of different
LLMs, we find that LLMs with larger scale generally bring higher SVRs (GPT-4 has lower SVR but
higher 𝑁 ′𝑠𝑦𝑛 than GPT-3.5 because it focuses on longer but error-prone programs). The code related
knowledge, especially Syz-program related knowledge, can help LLMs to generate seeds with
higher SVR. Using fine-tuned CodeLlama-syz can improve SVR of Zero-shot from 0% to 48.62% and
SVR of SyzGPT from 82.11% to 87.84%. In addition, the proportion of 𝑁 ′𝑠𝑦𝑛 to 𝑁𝑠𝑦𝑛 (GPT-4: 310/311,
Claude-3.5-Sonnet: 318/319, Llama-3: 287/300) indicates that increasing model complexity can also
significantly improve the quality of generated programs, which will be further demonstrated in
metrics of program diversity.
Contextual Effectiveness. To calculate CER, we obtain the overall program coverage and individ-
ual syscall coverage by Syzkaller’s syz-execprog [10]. Note that we do not include programs with a
length of 1 in the measurement of 𝑁𝑐𝑜𝑛 , as they have no context. And we define overall effectiveness
rate (OER=𝑁𝑐𝑜𝑛/𝑁𝑡𝑜𝑡𝑎𝑙 ) to represent the overall ability of a method to generate effective seeds.

The results in Table 2 highlight the effectiveness and diversity of the generated programs across
different models. By comparing methods using the same LLM, SyzGPT achieves the highest OER
(42.66% with GPT-3.5), validating its effectiveness. Fuzz4All and ECG exhibit higher CER due to
limited 𝑁𝑠𝑦𝑛 and ECG’s C2Syz conversion (Compilable C programs are likely to be context effective).
We also find fine-tuning CodeLlama with context effective programs can boost the generation
performance of SyzGPT and Zero-shot. By comparing SyzGPT across LLMs, we find using Claude-
3.5-Sonnet achieves the highest 𝑁𝑐𝑜𝑛 (261), OER (59.86%), 𝐿 (10.83) and 𝑁𝑠 (8.37), followed by GPT-4,
CodeLlama-syz and Llama-3, while the smaller chat-focuesd Vicuna-v1.5 lags significantly. This
demonstrates that the advancements in reasoning and specialized code knowledge can enable
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SyzGPT to generate longer and more effective sequences. To present the program diversity more
intuitively, we display the distribution of 𝐿 in Figure 7, which also indicates that the more code
knowledge and stronger reasoning ability the model has, the better the generation diversity.
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Fig. 7. Distribution of the lengths of syntax valid programs generated by different methods and models

Generation Cost. In our method’s default configuration (GPT-3.5), a high-quality program can
be generated within a few seconds and fewer than 2k tokens (0.007$), which is quite efficient and
acceptable. For the cost of program repair, it takes an average of 5 milliseconds per program, which
is accurate and fast enough, eliminating the need to use LLM for repair. For the computational costs,
the online LLMs incur no cost, while the offline LLMs require approximately 14GB GPU memory
for inference, 56GB GPU memory and 16 GPU hours for fine-tuning. For the cost of historical
corpus, since no runtime fuzzer corpus is available in this experiment, we use the corpus from a
default Syzkaller instance as historical corpus, which requires 24 hours to generate.

Table 3. Average results of fuzzing within 24 hours. The table shows the coverage (𝐶𝑜𝑣), unique coverage/u-
nique coverage rate (𝐶𝑜𝑣𝑢 /𝑅𝑢 ), unique coverage of LFSC (𝐶𝑜𝑣𝑙𝑢 ), number of valuable inputs (𝑁𝑣𝑖 ), number/rate
of covered specialized calls (𝑁𝑠 /𝑅𝑠 ), number of covered LFSC (𝑁𝑙 ), and improvement (IMP) of SyzGPT com-
pared with others, respectively.

Version Fuzzer 𝐶𝑜𝑣 ←IMP 𝐶𝑜𝑣𝑢 / 𝑅𝑢 ←IMP 𝐶𝑜𝑣𝑙𝑢 ←IMP 𝑁𝑣𝑖 ←IMP 𝑁𝑠 / 𝑅𝑠+ ←IMP 𝑁𝑙 ←IMP

6.6

Syzkaller 163370 13.06% baseline 323.00% 7110 16.67% 29084 26.77% 2693 / 69.09% 13.00% 278 111.51%
MoonShine 161526 14.35% 19530 / 0.94 343.62% 6935 19.61% 30362 21.44% 2682 / 68.80% 13.46% 414 42.03%
Healer 148585 24.31% ✕ ✕ ✕ ✕ ✕ ✕ 2166 / 55.57% 40.49% 327 79.82%
ACTOR 125166 47.57% ✖ ✖ ✖ ✖ 24951 47.77% 2543 / 65.24% 19.66% 443 32.73%
MOCK 173075 6.72% ✕ ✕ ✕ ✕ ✕ ✕ 2792 / 71.63% 8.99% 540 8.89%
ECG 164514 12.27% 20731 / 0.99 326.26% 6919 19.89% 33364 10.51% 2748 / 70.50% 10.74% 429 37.06%

KernelGPT 173342 6.56% 26203 / 1.98 163.13% 7584 9.38% 34463 6.99% 3241 / 63.25% 23.43% 408 44.12%
SyzGPT 184705 - 33960 / 3.23 - 8295 - 36871 - 3043 / 78.07% - 588 -

5.15

Syzkaller 161032 20.32% baseline 643.00% 7999 25.03% 29646 33.32% 2658 / 68.40% 15.80% 302 113.58%
MoonShine 163192 18.73% 23083 / 1.22 527.05% 7670 30.39% 27494 43.76% 2596 / 66.80% 18.57% 425 51.76%
Healer 149201 29.86% ✕ ✕ ✕ ✕ ✕ ✕ 1902 / 48.94% 61.83% 253 154.94%
ACTOR 144220 34.35% ✖ ✖ ✖ ✖ 33294 18.72% 2761 / 71.05% 11.48% 518 24.52%
MOCK 179810 7.76% ✕ ✕ ✕ ✕ ✕ ✕ 2885 / 74.24% 6.69% 600 7.50%
ECG 178767 8.39% 34271 / 3.70 173.78% 8623 15.98% 32525 21.52% 2741 / 70.54% 12.29% 447 44.30%

KernelGPT 183232 5.74% 37528 / 3.40 189.12% 8711 14.81% 34059 16.05% 3290 / 63.96% 23.84% 455 41.76%
SyzGPT 193758 - 44686 / 6.43 - 10001 - 39525 - 3078 / 79.21% - 645 -

4.19

Syzkaller 152885 14.10% baseline 317.00% 4173 17.35% 32498 48.70% 2764 / 74.88% 9.44% 268 113.06%
MoonShine 152988 14.02% 18269 / 1.03 307.77% 4124 18.74% 33655 43.59% 2728 / 73.91% 10.89% 407 40.29%
Healer 134257 29.93% ✕ ✕ ✕ ✕ ✕ ✕ 1772 / 48.01% 70.71% 217 163.13%
ACTOR 119178 46.37% ✖ ✖ ✖ ✖ 29242 65.26% 2621 / 71.01% 15.41% 431 32.48%
MOCK 172449 1.15% ✕ ✕ ✕ ✕ ✕ ✕ 2799 / 75.83% 8.07% 527 8.35%
ECG 163815 6.48% 26173 / 1.91 165.97% 4473 9.48% 43652 10.70% 2877 / 77.95% 5.14% 509 12.18%

KernelGPT 158193 10.27% 22286 / 1.49 212.75% 4237 15.58% 35424 36.42% 3146 / 65.34% 25.44% 371 53.91%
SyzGPT 174435 - 32547 / 3.17 - 4897 - 48324 - 3025 / 81.96% - 571 -

✕: Healer and MOCK do not support dumping rawcover and valuable inputs as they are not Syzkaller-based fuzzers.
✖: ACTOR does not support comparing unique coverage as the address map of its patched kernel is different.
+: Default 𝑁𝑒𝑛𝑎𝑏𝑙𝑒𝑑 of three kernels are 3898, 3886 and 3691, while KernelGPT enables 5124, 5144 and 4815. And we do not stat the LFSC newly introduced by
KernelGPT for 𝑁𝑙 .
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5.2 RQ2: Fuzzing Performance
To evaluate SyzGPT’s fuzzing performance, we compare it with state-of-the-art syscall-based kernel
fuzzers (Syzkaller, MoonShine, Healer, ACTOR, MOCK, ECG, and KernelGPT) in terms of coverage
and vulnerability detection. Among these fuzzers, MoonShine and ECG focus on optimizing the
initial corpus, while Healer and MOCK aim to improve syscall relationship learning. ACTOR adopts
an action-guided strategy instead of coverage-guided, and KernelGPT focuses on optimizing syscall
specifications. All fuzzers use default seeds from syzkaller/sys/linux/test/. Additionally, MoonShine
uses strong_distill.db, ECG takes the LLM-generated programs for all LFSC as initial corpus.db, and
KernelGPT employs the LLM-generated syscall specifications which define more specialized calls.
The experiments are conducted on three LTS kernels as detailed in Setup.
Code and Syscall Coverage. Table 3 shows the average fuzzing results of different fuzzers on
three kernels for five repeats of 24 hours in code and syscall coverage metrics. We compute𝐶𝑜𝑣𝑙𝑢 by
attributing the covered addresses to the functions that can only be reached from the LFSC syscall
entry in the kernel call graph [40], reflecting the fuzzer’s ability to cover unique code related to
LFSC. Addresses indirectly covered by LFSC are not included, as they are hard to track.
According to Table 3, SyzGPT outperforms all state-of-the-art fuzzers across every metric.

Compared to Syzkaller, MoonShine, Healer, ACTOR, MOCK, ECG, and KernelGPT, SyzGPT achieves
15.83%, 15.70%, 28.03%, 42.76%, 5.21%, 9.05%, and 7.52% average coverage improvements. Specifically,
SyzGPT shows significant gains in unique coverage finding ability over Syzkaller (4.28×), MoonShine
(3.93×), ECG (2.22×), and KernelGPT (1.88×). It also surpasses these fuzzers in the number of valuable
inputs (𝑁𝑣𝑖 ) by 36.27%, 36.26%, 14.24%, and 19.82%, respectively. In terms of syscalls metrics, SyzGPT
covers 12.75%, 14.31%, 57.68%, 15.52%, 7.92%, 9.39%, and 24.24% more syscalls compared with all
other fuzzers, with increases of 112.72%, 44.69%, 132.63%, 29.91%, 8.25%, 31.18%, and 46.60% in LFSC,
respectively. The growths of 𝐶𝑜𝑣 and 𝑁𝑠 of SyzGPT and other fuzzers are shown in Figure 8.
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Fig. 8. Growth of the average coverage and syscalls of SyzGPT on three kernels over 24 hours compared to
others. Since Healer and MOCK do not support recording syscalls over time, we plot their final numbers in
dashed lines. We also plot the number of syscalls of KernelGPT in dashed line as it has higher 𝑁𝑒𝑛𝑎𝑏𝑙𝑒𝑑 .

Averagely, MOCK ranks second in 𝐶𝑜𝑣 , 𝑅𝑠 , and 𝑁𝑙 . This can be attributed to its context-aware
mutation strategy, indicating that addressing dependency problem in kernel is effective for fuzzing.
KernelGPT performs the best 𝑁𝑠 and the second best in 𝑅𝑢 and 𝐶𝑜𝑣𝑙𝑢 , thanks to its new syscalls
defined in Syzlang that enable it to cover unique code branches. However, its low 𝑅𝑠 indicates
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the presence of the LFSC issue. ECG ranks second in 𝑁𝑣𝑖 , with good performance in 𝐶𝑜𝑣 and
𝑅𝑠 . This is likely due to its richer and LFSC-focused initial corpus, confirming that high-quality
seed generation for LFSC enhances fuzzing outcomes. ACTOR ranks third in 𝑁𝑙 , likely benefiting
from its action-guided strategy, but this comes at the cost of lower 𝐶𝑜𝑣 . These observations
highlight the superiority of SyzGPT, which unlocks more syscalls (particularly LFSC) and achieves
higher coverage by providing richer, high-quality seeds and more comprehensive dynamic syscall
dependencies for kernel fuzzing. In addition, our experiments (as discussed in section 6) indicate that
transferring our method to KernelGPT (MOCK as well) can further improve fuzzing performance.
Vulnerability Detection.We compare the vulnerability detection ability of SyzGPT to state-of-
the-art fuzzers by analyzing the total crashes found during five repeats of 24-hour fuzzing. We
ignore the errors introduced by fuzzer itself and de-duplicate the vulnerabilities according to the
crash title. Figure 9 is an UpSet diagram [38] showing the intersection of the vulnerabilities found by
eight fuzzers. On three LTS kernels, SyzGPT found 115 vulnerabilities, while Syzkaller, MoonShine,
Healer, ACTOR, Mock, ECG, and KernelGPT found 78, 85, 12, 36, 11, 65, and 64, respectively. SyzGPT
gains 47.44%, 35.29%, 858.33%, 219.44%, 945.45%, 76.92%, and 79.69% improvements in vulnerability
detection compared to these fuzzers. And among all the vulnerabilities found on three kernels,
SyzGPT found 27 unique ones, while Syzkaller, MoonShine, Healer, ACTOR, Mock, ECG, and
KernelGPT only found 9, 14, 2, 10, 5, 9, and 13.

Fig. 9. Intersection of vulnerabilities discovered by SyzGPT and others of 5-repeat fuzzing on three kernels.
The horizontal direction represents the total number and distribution of vulnerabilities discovered by each
fuzzer, while the vertical direction shows which fuzzers identified the specific vulnerabilities.

We further analyze the relationship between LFSC and discovered vulnerabilities. We define
vulnerabilities directly caused by LFSC as those including invocations of LFSC in crash call trace or
Proof of Concept (PoC), while vulnerabilities indirectly caused by LFSC are difficult to evaluate
because the seeds generated by SyzGPT for LFSC may also allow fuzzers to explore more code
and discover more crashes in other branches at the same time. Therefore, we only count the
vulnerabilities directly induced by LFSC (the actual amount would be higher). On three kernels,
SyzGPT, Syzkaller, MoonShine, Healer, ACTOR, Mock, ECG, and KernelGPT discover 10, 2, 4, 6,
1, 4, 4, and 4 unique LFSC-introduced vulnerabilities, respectively. This indicates that SyzGPT is
capable and effective in LFSC-related vulnerability detection as well.

5.3 RQ3: Ablation Study
Ablation Study on Seed Generation. We conduct an ablation study on seed generation for five
relevant components: ❶ Syntax learning, ❷ Syscall dependency, ❸ DRAG context, ❹ Existing
corpus, and ❺ Program repair. The baseline group is the original SyzGPT in default seed generation
settings without program repair, as we need to compare the original outputs of different ablations
on SyzGPT instead of the calibrated outputs. Notably, the re-generation strategy is also not included,
as it is enabled during fuzzing.
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Table 4. Contributions of each component of SyzGPT to the metrics of program generation with GPT-3.5,
with baseline and best values highlighted in bold. Only Syzlang: dependencies extracted from Syzlang. Only
Manpage: dependencies extracted from manpages. Fixed: fixed shots as context. Random: random shots as
context. Regen: failure history as context.

(# / # exhibit the metrics without / with program repair.)

Metrics SyzGPT System Prompt Syscall Dependency Context Existing Corpus

LLM: GPT-3.5 Baseline Without Syntax Only Syzlang Only Manpage Fixed Random Base + Re-gen Syzbot Local-120h

SVR (% / %) 63.76 / 87.84 66.28 / 88.76 60.32 / 85.78 59.63 / 87.38 26.83 / 81.89 42.63 / 83.17 89.68 / 91.28 66.65 / 86.92 61.24 / 91.98
CER (% / %) 45.32 / 48.56 21.45 / 30.23 34.60 / 42.25 48.46 / 49.87 29.06 / 50.14 42.16 / 51.52 45.52 / 49.25 47.55 / 49.87 37.83 / 44.14
OER (% / %) 28.90 / 42.66 14.22 / 26.83 20.87 / 36.24 28.90 / 43.58 7.80 / 41.06 17.97 / 42.85 40.82 / 44.96 31.69 / 43.35 23.17 / 40.60
𝐿 3.13 / 3.91 1.72 / 2.43 2.22 / 3.24 2.80 / 3.35 2.80 / 4.97 2.85 / 3.74 3.97 / 3.99 3.01 / 2.99 2.84 / 3.59
𝑁𝑠 2.72 / 3.12 1.58 / 1.92 2.02 / 2.65 2.46 / 2.73 2.61 / 3.84 2.40 / 2.75 3.12 / 3.13 2.63 / 2.62 2.27 / 2.76

Tokens 1769.33 1121.65 1612.21 1955.37 1887.86 1602.25 1860.37 1752.00 1733.53
Time (s) 4.74 3.89 5.23 9.51 5.60 7.48 5.35 9.72 5.18

According to the System Prompt segment of Table 4, we find the absence of program syntax
can keep the SVR but significantly reduce CER (from 45.32% to 21.45%), 𝐿 (from 3.13 to 1.72) and
𝑁𝑠 (from 2.72 to 1.58). We speculate that this is because, without syntax learning, LLM tends
to mimic examples in the context rather than truly understanding the syntax of Syz-programs,
resulting in programs that appear correct but lack genuine compliance. Compared to specialized
call level dependencies from Syzlang, system call level dependencies from Manpage have close
SVR and higher CER (from 34.60% to 48.46%). But they are all lower than the CER (45.32%) of
baseline group with merged dependencies, proving the effectiveness of our syscall dependency
augmentation. Compared to different ways of context construction, using fixed context results in
obvious degradation in SVR (26.83%) and CER (29.06%) due to the limitation of sampled programs.
Switching to random context (representing the absence of syscall dependency) can partially recover
SVR (42.63%) and CER (42.16%), since there is a chance of randomly retrieving the appropriate R-
programs. This demonstrates that our design of dependency-based R-programs retrieval is essential
to effective seed generation. Additionally, re-generation based on baseline can improve all metrics.
Regarding the existing corpus, utilizing Syzbot corpus enhances SVR, CER, and OER due to its
richer set of programs and better contextual knowledge. The 120-hour local corpus yields a higher
SVR than the baseline group, but slightly reduces other metrics. This may be because expanding the
corpus scale will also increase the randomness of the R-programs retrieval, as their candidates are
also growing. As for ablation of program repair, the results indicate that it significantly improves
seed generation performance across all metrics. Finally, in terms of variation of OER compared to
baseline, we can rank the contributions as: DRAG context (OER-21.10), syntax learning (OER-14.68),
program repair (OER+13.76), syscall dependency (OER-10.93), existing corpus (OER+2.79).
Ablation Study on Fuzzing. Based on the previous ablation study, the context used in retrieval-
augmented in-context learning and the program repair significantly contribute to seed generation
performance. Therefore, we conduct the ablation study on fuzzing performance, focusing primarily
on the following components: ❶ DRAG Context, ❷ Program repair, ❸ Base LLM, and ❹ Feedback-
guided Seed Generation, which is only enabled in fuzzing.
According to Table 5, we can find that directly using LLM (Zero-shot) in kernel fuzzing results

in the worst performance. This shows that without our method, the low-quality seeds generated by
LLM itself waste fuzzing resources instead of improving performance. Compared with SyzGPT-
Default, using the seeds generated for LFSC as initial corpus (SyzGPT-Init) increases LFSC-related
syscall coverage (𝑅𝑠 and 𝑁𝑙 ), but significantly reduces code coverage. While the initial corpus
contains rich LFSC-related seeds that facilitate syscall coverage, it lacks runtime corpus knowledge,
which limits the soundness for code coverage. This highlights the effectiveness of our feedback-
guided seed generation strategy. Removing program repair (SyzGPT-NoRepair) and using random
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Table 5. Ablation study of each SyzGPT component’s contribution to the 24-hour fuzzing performance on 6.6,
where DEC is the decrease compared to baseline SyzGPT-Default.

Ablation Group 𝐶𝑜𝑣 ←DEC 𝐶𝑜𝑣𝑢 / 𝑅𝑢 𝐶𝑜𝑣𝑙𝑢 𝑁𝑣𝑖 𝑁𝑠 / 𝑅𝑠 ←DEC 𝑁𝑙

Syzkaller 163370 -11.55% baseline 7110 29084 2678 / 68.70% -11.99% 278
Zero-shot 147941 -19.90% 14041 / 0.44 5826 20167 2385 / 61.19% -21.62% 274

SyzGPT-Init 172092 -6.83% 28610 / 1.98 7407 35246 3202 / 82.14% 5.23% 971
SyzGPT-Random 173518 -6.06% 26197 / 1.48 7339 35977 2787 / 73.99% -8.41% 448
SyzGPT-NoRepair 175995 -4.72% 27139 / 1.70 7495 34163 2995 / 74.53% -1.58% 577
SyzGPT-CodeLlama 181778 -1.58% 30988 / 2.22 7548 34497 2911 / 72.81% -4.34% 521

SyzGPT-CodeLlama-syz 185809 0.60% 32547 / 2.62 8329 37656 3110 / 79.78% 2.20% 593
SyzGPT-Default 184705 - 33960 / 3.23 8295 36871 3043 / 78.07% - 588

programs instead of R-programs retrieved by dependencies in context (SyzGPT-Random) also lead to
significant reductions in all metrics, underscoring their indispensability for SyzGPT. Regarding using
different base LLMs, CodeLlama achieves comparable code coverage to default GPT-3.5, indicating
that our approach is scalable to LLMs with specialized programming knowledge. Furthermore,
CodeLlama-syz shows even higher metrics except for 𝑅𝑢 ), implying that our fine-tuning based on
LFSC-related program datasets can promote coverage, especially LFSC-related coverage, during
fuzzing. The lower 𝐶𝑜𝑣𝑢 and 𝑅𝑢 compared to SyzGPT-Default likely stem from reduced output
diversity due to instruction tuning. Finally, in terms of variation of 𝐶𝑜𝑣 compared to baseline,
we can rank the contributions as: feedback-guided seed generation (𝐶𝑜𝑣-6.83%), DRAG context
(𝐶𝑜𝑣-6.06%), and program repair (𝐶𝑜𝑣-4.72%). The coverage and syscalls growth over time are
plotted in Figure 10 for more intuitive understanding.
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Fig. 10. Coverage and syscall growth of SyzGPT with different components disabled over 24 hours on average

5.4 RQ4: Real-World Bug Discovery
To evaluate the real-world bug discovery capabilities of SyzGPT, we conduct persistent fuzzing
on the LTS kernel 6.6, 5.15, and 4.19, as well as several other versions during our development.
As listed in Table 6, SyzGPT has independently found 26 unknown bugs during our experiments,
10 of which are directly related to LFSC and are hard to be discovered by other tools (6 more are
indirectly related to LFSC through our crash log analysis). All bugs have been reported to upstream
or downstream vendors, with 11 confirmed (including the fixed ones).
Case Study. We examine an LFSC-introduced 0-day bug found by SyzGPT. Specifically, the
iommufd_object is allocated by one thread with iommufd_ioas_alloc and freed by another thread
with iommufd_destroy. When another thread accesses the freed object by iommufd_put_object,
it triggers use-after-free (UAF). By analyzing the bug’s PoC (shown in the following listing), we
find that the last three syscalls in the PoC are LFSC. Finally, we inspect the enriched corpus of the
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fuzzer and find that each of the LFSC has several valid seeds generated by SyzGPT, demonstrating
the effectiveness of SyzGPT in finding real-world bugs by addressing the problem of LFSC.

openat$iommufd (.. BLINDED ..)
ioctl$IOMMU_IOAS_ALLOC (.. BLINDED ..)
ioctl$IOMMU_TEST_OP_ADD_RESERVED (.. BLINDED ..) (async , rerun: BLINDED)
ioctl$IOMMU_DESTROY$ioas (.. BLINDED ..)

Table 6. New bugs independently discovered by SyzGPT during our experiments

Kernel Crash Type Bug Function* LFSC-related PoC Status

6.6 task hung block_read_full_folio  Syz,C Reported
6.6 kernel bug __gfs2_glock_put  No Reported
6.6 memory leak wg_packet_send_keepalive G# No Reported𝐶
6.6 out-of-bounds __lock_acquire # No Reported
6.6 out-of-bounds mceusb_set_tx_mask  C Confirmed𝐶
6.6 use-after-free iommufd_test  Syz,C Fixed𝐶
6.6 out-of-bounds udf_close_lvid  No Fixed
6.6 kernel bug ntfs_collate_ntofs_ulong # Syz,C Confirmed𝐶
6.6 out-of-bounds udf_finalize_lvid G# No Reported
6.6 use-after-free ntfs_attr_find # No Reported
6.6 use-after-free ccid2_hc_tx_packet_recv  No Reported
6.6 out-of-bounds jfs_readdir # No Fixed
6.6 general protection fault tomoyo_profile  Syz,C Reported
6.6 general protection fault bio_associate_blkg_from_css  Syz,C Fixed𝐶
6.5 out-of-bounds do_journal_end # Syz,C Fixed
6.5 out-of-bounds check_igot_inode G# No Fixed
6.5 kernel bug unix_bind # Syz,C Reported
6.5 rcu stall sys_getdents64 # Syz,C Reported
6.4 use-after-free radix_tree_descend  No Fixed
6.2 memory leak p9_client_create G# Syz Fixed𝐶
5.15 general protection fault __mod_lruvec_page_state # No Reported
5.15 task hung __rq_qos_throttle  Syz,C Reported
5.15 kernel bug scsi_host_alloc G# Syz,C Confirmed
4.19 use-after-free Read nbd_put # No Reported
4.19 use-after-free Read hardware_disable # No Reported
4.19 task hung __jbd2_journal_force_commit G# Syz Reported

𝐶 : Applying for CVE. G#: Indirectly LFSC-related. * All bugs above were found by SyzGPT earlier than Syzbot.

6 Discussion
Insights of LLMs for Kernel Fuzzing. ❶ Defining program syntax is essential for niche program-
ming languages. ❷ The context retrieved by RAG should adapt to the generated target, or it leads
to superficial content imitation. ❸ The inconsistency in generation caused by LLM hallucinations
is acceptable in kernel fuzzing, if we ensure validity. In addition to these insights, we summarize
the optimizable subtasks of LLMs for kernel fuzzing in process order: specification generation,
seed generation, seed mutation and scheduling, feedback mechanisms, vulnerability reproduction,
and de-duplication. Currently, LLMs are only applied in the stages of specification generation
(KernelGPT) and seed generation (ECG and SyzGPT). However, there is still valuable space that
LLMs can utilize, such as execution traces for seed scheduling and call stacks for bug de-duplication.
Transferability and Sustainability. As a general framework for generating seeds for any syscalls
in kernel fuzzing, SyzGPT can be seamlessly integrated with Syzkaller-like or syscall-based kernel
fuzzers, enhancing their performance. For example, in syscall specification generation (e.g., SyzDe-
scribe and KernelGPT), SyzGPT can effectively generate seeds for newly defined syscalls once they
are included in the measurement scope. This is demonstrated by the improvements in SyzGPT-
KernelGPT compared to KernelGPT (6.86% in𝐶𝑜𝑣 and 6.95% in 𝑁𝑠 ) as shown in Figure 11. Similarly,
our approach can complement efforts like initial corpus optimization (e.g., MoonShine) and syscall
dependency optimization (e.g., MOCK). SyzGPT can also assist directed kernel fuzzing once we
obtain the mapping of target points to syscalls. The comparable results of SyzGPT-CodeLlama
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indicates the adaptability of SyzGPT to different LLMs. Moreover, the superior results of SyzGPT-*
over 72 hours in Figure 11 suggest that SyzGPT is not improving coverage by sacrificing the
long-term potential. Instead, it enables more syscalls and enhances the coverage potential.
Limitation and Future Work. A small portion of programs generated by our method still have
invalid syntax, due to complex syscall arguments that are difficult for LLMs to handle or incomplete
repair operations. Such as memory offsets of variables like pointers or arguments with nested
data structures. Therefore, we plan to design more comprehensive repair operations. As for the
relatively low CER of our approach, one possible reason is that due to the retrieval randomness,
the retrieved R-programs are not beneficial for the target syscall. We plan to propose a smarter
R-programs retrieval algorithm by prioritizing the program candidates. Another possible reason is
that some manpage documentation does not explain the dependencies between the syscalls and
other related syscalls. We plan to pre-train LLMs based on more kernel documentation and effective
Syz-programs in the future, which will fundamentally mitigate these limitations.
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Fig. 11. The average 72-hour fuzzing results of the transferability of SyzGPT on different methods and LLM

7 Conclusion
In this paper, we design and implement SyzGPT, the first automated approach to generate programs
via LLMs for low frequency syscalls (LFS) in kernel fuzzing. SyzGPT adopts a dependency-based
retrieval-augmented generation (DRAG) method that leverages the historical corpus and syscall
dependency knowledge to generate syntactically and contextually valid Syz-programs for LFS,
which are hard to generate from fuzzer mutation or manual construction. With the periodically
feedback-guided seed generation, SyzGPT improves code coverage by 31.85%, LFS syscall coverage
by 17.73%, LFS coverage by 58.00%, and vulnerability detection by 323.22% over Syzkaller, Moon-
Shine, Healer, ACTOR, MOCK, ECG, and KernelGPT on three LTS kernels, and independently finds
26 unknown bugs in Linux kernel (10 are LFS-related), with 11 confirmed.

8 Data Availability
Our artifact is maintained at https://github.com/QGrain/SyzGPT and archived in Zenodo [14].
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